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To find 𝑑𝑑
𝑑Ω

(𝜃,𝜑) we compare the area covered by the incident particles at impact 
parameters between 𝑏 and 𝑏 + 𝑑𝑏 (i.e. 𝑑𝑑 = 2𝜋𝑏𝑑𝑏) to the solid angle subtended by the 

exiting beam of particles (i.e. 𝑑Ω = 2𝜋 sin 𝜃 𝑑𝜃) to arrive at 𝑑𝑑
𝑑Ω

= 𝑏
sin𝜃

�𝑑𝑏
𝑑𝜃
�.  To find the 

DSCS, we need to calculate the trajectory of a projectile particle for every possible impact 
parameter.  We then did the example of a point particle elastically scattering from a fixed 

hard sphere of radius 𝑅 in three dimensions and found that 𝑑𝑑
𝑑Ω

= 𝑅2

4
, which is independent of 

angle!  The total scattering cross section is just 𝑑 = 𝜋𝑅2, which is the cross-sectional area 
presented by the sphere. 

We considered Rutherford scattering and calculated the differential scattering cross 
section for scattering of an alpha particle (charge q) from a Au nucleus (charge Q).  The two 
particles interact by means of the Coulomb force, which is parameterized as 𝐹 = 𝛾/𝑟2, with 
𝛾 = 𝑞𝑞/4𝜋𝜀0.  The orbit is a hyperbola, characteristic of an orbit of two particles interacting 
by means of a central inverse-square-law force with energy 𝐸 > 0.  From our previous work 
on the central-force two-body problem we know a lot about this orbit, and the fact that 
angular momentum is conserved, for example.  By calculating the change in momentum of 
the alpha particle |∆�⃗�| in two ways, we found the relationship between the impact parameter 
and the scattering angle: 𝑏 = 𝛾

𝑚𝑣2
cot 𝜃/2, where 𝑚 is the alpha particle mass and 𝑣 is its 

initial speed of the alpha when far from the nucleus.  Putting this into the formula for the 

differential scattering cross section, 𝑑𝑑
𝑑Ω

= 𝑏
sin𝜃

�𝑑𝑏
𝑑𝜃
�, we find: 𝑑𝑑

𝑑Ω
= � 𝑞𝑞/4𝜋𝜀0

4𝐸 sin2(𝜃/2)�
2
. 

This result was tested experimentally by Geiger and Marsden, who showed that the 
scattering rate scaled with 𝑛𝑡𝑡𝑡𝑡𝑡𝑡 (by varying the thickness of the foil), scaled as 1/E2 (by 

varying the energy of the incident alpha particles) , scaled as 1
sin4(𝜃/2) (by measuring the 

number of particles scattered vs. outgoing angle), and scaled as Z2, where Q=+Ze is the 
nuclear charge by measuring scattering from Al, Cu, Ag, and Au. 

Note that because 𝑑𝑑
𝑑Ω

~𝑞2𝑞2, the scattered particle distribution is insensitive to whether 
the Coulomb interaction is attractive or repulsive.  Also, the agreement for the angular 
dependence of 𝑑𝑑

𝑑Ω
 with data suggests that the Coulomb force has the simple 1/r2 dependence 

even down to nuclear length scales.  This is a bit surprising since we are using classical 
physics to learn something about the sub-atomic domain.  On the other hand, the Coulomb 
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interaction alone tells you a lot about the structure of the atom in quantum mechanics.  
Finally, the total scattering cross section calculated from this 𝑑𝑑

𝑑Ω
 diverges.  This is because 

the bare Coulomb force is infinitely long ranged.  In reality, the Coulomb force of the 
nucleus is screened out by the electron cloud of the atom, on the length scale of one nm, or 
less.  When this screening is taken into account the total scattering cross section becomes 
finite, as observed.  

These calculations assume that the alpha particle only undergoes one scattering event in 
the material (the Born scattering approximation).  In addition, because of the electron 
screening, when an alpha particle is near one nucleus, it is insensitive to all the other nuclei 
because they are ‘cloaked’ by their neutralizing electron clouds.  

Up to this point we have considered Newtonian dynamics and Lagrangian dynamics.  
Now we consider Hamiltonian dynamics.  The Lagrangian is written in terms of 𝑛 
generalized coordinates and their time derivatives.  This set of parameters constitutes a 2𝑛 − 
dimensional state space.  The Hamiltonian is written in terms of the generalized coordinates 
and their conjugate momenta, defined as 𝑝𝑖 = 𝜕ℒ/𝜕�̇�𝑖.  This set of 2𝑛 parameters constitutes 
phase space. 

Recall from Lecture 15 that the Hamiltonian was derived to be ℋ = ∑ 𝑝𝑖𝑛
𝑖=1 �̇�𝑖 − ℒ, 

where 𝑝𝑖 = 𝜕ℒ/𝜕�̇�𝑖, and it is assumed that the Lagrangian has no explicit time dependence.   

One can solve the 𝑛 canonical momentum equations for �̇�𝑖 in terms of the coordinates 𝑞𝑖 
and momenta 𝑝𝑖 to re-express all of the velocities in terms of just the coordinates and 
momenta �̇�𝑖 = �̇�𝑖(𝑞𝑖,𝑝𝑖 ).  With this, one can express the Hamiltonian in terms of coordinates 
and momenta alone ℋ(𝑞,𝑝), essentially employing a Legendre transformation to move from 
(𝑞𝑖, �̇�𝑖) to (𝑞𝑖,𝑝𝑖 ) as the independent variables.  Taking the derivative of the Hamiltonian 
with respect to 𝑞𝑖 and 𝑝𝑖, one finds Hamilton’s equations: �̇�𝑖 = 𝜕ℋ/𝜕𝑝𝑖 and �̇�𝑖 = −𝜕ℋ/𝜕𝑞𝑖, 
𝑖 = 1, … ,𝑛.  This is a set of 2𝑛 first-order differential equations, as opposed to the set of 𝑛 
second-order differential equations one gets from Lagrange’s equations.   

The Hamiltonian dynamics formulation is useful for quantum mechanics and for classical 
statistical mechanics.  As a way of solving classical mechanics problems it has few 
advantages over Lagrangian dynamics.   

 


